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ABSTRACT

A method is proposed for determining the excitation ampli-
tudes and phases of the elements of electromagnetic multiapplicator
systems for forming a hot zone around a deep-seated tumor. The
general principle is applied to a two-dimensional problem of a
piecewise homogeneous cylinder heated by an array of electric
current filaments placed outside the cylinder. Numerical simula-
tions are performed to check the effectiveness of the approach. The
results demonstrate that using this optimization method, an
improved specific absorption rate (SAR) distributions can be
achieved.

I. INTRODUCTION

Hyperthermia cancer therapy is a treating procedure in which
the temperature of cancerous tumors embedded in healthy human
tissue is elevated above 42°C. Among the sources of heat, multiap-
plicator arrays operating at microwave and radio frequencies are
rapidly gaining utility in the clinic. A large body of previous work
with multiapplicator arrays for hyperthermia purposes can be found
in [1]. For a proper hyperthermia treatment, it is necessary to
deliver maximum power to the region of the tumor to be treated
while minimally heating surrounding healthy tissues. This can be
effected by focusing electromagnetic field at the tumor. The con-
centrated field, helped by the fact that the tumor tends to accumu-
late more heat than the normal tissue because of shuggish blood
flow, will form a hot zone in the tumor region. The inherent prob-
lem, of course, is that the electromagnetic field cannot penetrate
deep if the frequency is high, while if the frequency is low, the
focusing ability deteriorates.

We present an efficient method for determining the optimal
excitation coefficients (amplitudes and phases) of the elements of a
multiapplicator array aimed at forming a hot zone in a deep-seated
tumor. The proposed approach follows Harrington’s optimization
procedure [2]. We characterize the multiapplicator system by a
dimensionless performance index, which is a ratio of two quadratic
forms, defined as the ratio of the power dissipated in the tumor
region to a sum of this power and a weighted summation of the
powers supplied to suitably selected surrounding regions. The
maximization of this performance index leads to an eigenvalue
matrix equation. The largest eigenvalue of this equation is the
maximum value of the performance index and the eigenvector
which corresponds to this eigenvalue itemizes the desired array
excitation coefficients. In the course of the optimization process,
the analysis of the electromagnetic field distribution in the body
region produced by each array element needs the most lengthy
numerical process. Once the fields due to each array element are
known, the matrix eigenvalue equation can be easily solved for the
largest eigenvalue and for the corresponding eigenvector resorting
to an available IMSL routine.

In this paper, we consider a piecewise homogeneous cylindri-
cal body as many parts of the human body can be very well
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represented by this model. Electric current filaments are used as
applicators. To facilitate the solution for the fields in the various
regions, we use a recently suggested simple and efficient method of
moments procedure [2]. In this approach, instead of solving for
conventional equivalent surface currents, we solve for sets of ficti-
tious impulsive sources (line sources in the two-dimensional case),
each set simulating the fields in a homogeneous region which
corresponds to it. The numerical simulations illustrate that a better
control of the SAR pattems can be attained using the proposed
optimization strategy.

II. OPTIMIZATION PROCEDURE

Consider a piecewise homogeneous lossy body situated in
free space as shown in Fig. 1. Our objective is to heat a tumor
region within the body, referred to as region ¢, bounded by a closed
surface S, while affecting the surrounding tissues as little as possi-
ble. The heating is attained by means of a multiapplicator array
consisting of M sources placed around the body. A harmonic time
dependence is assumed and suppressed throughout. Also, the mag-
nitude of the complex quantity is the effective (root-mean-square)
value of the instantaneous quantity. A general optimization pro-
cedure suggested by Harrington {2] is used to adjust the complex
excitation coefficients 7,,l,,--- [y of the array elements, We
define a dimensionless performance index as the ratio of the power
dissipated in region ¢ to a sum of this power and a weighted sum-
mation of the powers supplied to suitably selected surrounding
regions. We denote the power dissipated in the desired region by P’
and the weighted summation by P*, Letting the performance ratio
be denoted by p, we have

P! P!
" PY4+PY  P'4Y P
i

where P¥ denotes the power supplied to the surrounding region i
and ¢g; (g; 20) is a dimensionless real weighting multiplier
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Fig. 1. Piecewise homogeneous body and multiapplicator array.
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associated with this region. Using straightforward algebraic steps,
we obtain

*ni
= R d Z X pRpgly
T*R'T P q

T*R'+R*TT Y X LRy +R3I,
P 9

p &3

Here, [R'] and [R'+R¥] are square matrices of order M. The
(p,q)elements R,fq and Ry, are given, respectively, by

1 " ]
Rig= q)S‘(prHq* +E;xH,) - f ds 3)

and
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In (3) the integration is over the closed surface S; bounding region
t, while in (4) the integration is performed over the ith region
boundary ;. In both (3) and (4), (E,,H,) is the eleciromagnetic
field due to the gth array element when it is operating alone and
driven by a unit excitation (I, =1), fi is a unit vector inwardly nor-
mal to the respective surface over which the integration is per-
formed, and ds denotes a differential element of area. Also in (2),
T is an M -element column vector whose ¢th element is /,, and / *
denotes the transpose complex conjugate of the vector /.

The maximization of (2) can be accomplished by treating

each element of 7 and 7* as a variable and setting the necessary
conditions

9 _ 12 .-
3, 0, k=12, .M 5)
and
P
=0, k=12, M
A (6)

However, since p is real it is sufficient to impose one of these con-
ditions, the other will follow immediately. Applying (6), we arrive
at

% __ 1 - -
31,: - P1+Pw %R}‘qlq p%‘l(Riq +Rkn‘;)1q =0 (7)
for k=1,2, - -,M. Now, assuming P'+P* #0 (else no power is

being supplied to the body), equation (7) can be cast into the matrix
form

(R']T =p[R* +R*1T (®)
It is easily recognized that (8) is an eigenvalue equation with eigen-
value p and eigenvector I'. Hence, the maximum value of p would
be the largest eigenvalue of (8) and the eigenvector I” which
corresponds to it would give the desired array excitation coeffi-
cients. With a view towards deriving a solution to (8), attention
should be given to the fact that the elements of [R'] satisfy
R!,=(R.,)" and those of [R*] satisfy Ry, =(Rg)". Thus, [R'] and
[R™] are Hermitian and consequently the matrix eigenvalue equa-
tion (8) can be solved applying a well stabilized IMSL routine.

III. NUMERICAL SIMULATIONS

As a study case, we treat a two-dimensional problem. We
consider an infinitely long penetrable cylinder of circular cross sec-
tion situated in free space. The cross section of the cylinder is
shown in Fig. 2. The cylinder is composed of a 6 cm in diameter
circular tumor region embedded in a 32 ¢m in diameter homogene-
ous muscle region. The center of the tumor region is moved 4 cm
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Fig. 2. Tissue model and suggested auxiliary optimization regions.

along the x axis from the center of the muscle region. The illumi-
nation of the cylinder is due to a 5 electric cutrent filaments
equispaced on a 90 c¢m in diameter cylindrical surface concentric
with the cylindrical muscle region. The excitation is at 25 MHz.
The values of the electric parameters of the muscle and the tumor at
the excitation frequency were specified according to [5].

To determine the optimal excitation currents, we execute the
procedure outlined in the preceding section. As a first step, we
should solve successively for each electromagnetic field (E,.H,)
appearing in (3) and (4). Specifically, we solve for the fields in the
tumor, muscle, and exterior regions when in turn only the respec-
tive gth applicator is operating while the others are absent.
Towards this end, we use the method that has been recently pro-
posed in [3] and [4]. In this approach, we solve for sets of fictitious
impulsive sources (line sources in this two-dimensional case), each
set simulating the fields in a corresponding homogeneous region.
The sources of yet unknown complex amplitudes associated with a
given region are situated outside the region (so that their fields are
regular on and within the surface bounding the region) and are
assumed to radiate into a homogeneous unbounded space having
constitutive parameters equal to those of their respective region.
The sources associated with the exterior free space region are only
assumed to simulate the electromagnetic field scattered by the
cylinder in the original situation. To obtain the total field in the
exterior free space region, the incident field due to the ¢ th applica-
tor when it is operating alone and driven by a unit excitation
(I, =1) must be superposed. Simulated equivalences for the tumor,
the muscle, and the external free space are shown in Fig. 3. The
electromagnetic fields in the various regions are related by the con-
tinuity conditions for the tangential components of the electric and
magnetic fields across the boundaries between the regions. We
impose the boundary conditions at a sufficient number of points on
the boundaries to obtain a solution within a reasonably low error.
Consequently, the functional equations are reduced to the matrix
equations

5
(zi7, =V,

qg=12,--- .M ®

- . ..
I is the fictitious

where [Z] is the generalized impedance matrix, [
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Fig. 3. Simulated equivalences for the (a) exterior unbounded
free space, (b) muscle region, and (c) tumor region,
when the g th applicator alone is operating.

current vector and VZ is the excitation vector corresponding to the
qth applicator. If the matrix [Z] is invertible, the M matrix equa-
tions in (9) can be readily solved for the unknown fictitious fila-
mentary currents by inversion. Note that matrix [Z] of (9) depends
on the geometry and on the electrical properties of the body, but not
on the excitation. Thus the same matrix [Z], whose construction
and subsequent inversion are the most time consuming operations,
is used for solving the unknown current vectors due to each of the
independent excitations. Once these currents are revealed, approxi-
mate values for the fields due to each of the M applicators at any
point in space, in general, and those produced in regions of interest
within the body, in particular, can be easily evaluated exploiting the
analytically known fields of line sources.

To proceed with the optimization process, the muscle region
is subdivided into three auxiliary regions as shown in Fig. 2. Dif-
ferent weighting multipliers have been assigned to each of these
auxiliary regions. For region 1, which is concentric with the tumor,
we set a;=1. For the intermediate region, we choose a,=0.02, and,
finally, for the outer shell (region 3) we let a;=0.015. Here, by
choosing a, to be relatively high compared with the weights associ-
ated with the rest of the body, we direct the optimization process to
bring down the field strength in the healthy tissues adjacent to the
tumor. Less weight has been given to the peripheral region because
this region can be cooled by external means. The SAR distribution
obtained with the optimal excitation is shown in Fig. 4. This distri-
bution should be compared with the one for uniform excitation
shown in Fig. 5. Clearly, the uniform excitation focuses the heat
energy in the central part of the body and thus heats both the center
and the half of the body which does not include the tumor much
more than the optimal currents. It should be emphasized that the
optimization results are not highly sensitive to the choice of the
auxiliary regions and their respective weights, though an unwise
choice might lead to an undesired power absorption in healthy tis-
sues, For example, if we regard the whole muscle region as a single
reference region and thus optimize the ratio of the power dissipated
in the tumor to the total power supplied to the body, the SAR distri-
bution shown in Fig. 6 results. If on the other hand we assign a
zero weight to the two auxiliary muscle regions designated 2 and 3,
the SAR distribution of Fig. 7 results. Finally, SAR distributions in
the y =0 cross section for some of the above cases are compared in
Fig. 8. Note that both Fig. 6 and Fig. 7 illustrate undesired SAR
patterns as in the two examples local overheating of healthy tissues
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Fig. 4. Normalized SAR distribution for the excitation coefficients
obtained with @y =1, a»=0.02, and a3=0.015.
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Fig. 5. Normalized SAR distribution for uniform excitation.
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Fig. 6. Normalized SAR distribution for the excitation coefficients
obtained with ¢, =a,=a,=1.

occurs. It may be added that in any event one should examine the
SAR distribution produced by the optimization procedure. Then, if
an unwanted excessive local heating is observed, it can be dimin-
ished by giving more weight to the regions surrounding the hot
Spots.

IV. CONCLUSION

An optimization method for determining the excitation ampli-
tudes and phases of the elements of electromagnetic multiapplicator
systems for forming a hot zone around a deep-seated tumor has
been proposed. The method has been demonstrated through a
numerical study of a simple two-dimensional case to be effective.
We believe that this simple case highlights the main features of the
proposed method. Application of the method to more realistic
models corresponding to computer tomography images as well as
studies of more practical applicators remain to be done.
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Fig. 7. Normalized SAR distribution for the excitation coefficients
obtained with ;=1 and a,=a3=0.
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Fig. 8. SAR distributions in the y =0 cross section for the

cases of Fig. 4 (curve a), Fig. 5 (curve b), and Fig. 7 (curve c).
The vertical reference lines indicate the boundaries of the tumor.

REFERENCES

Special issue on phased arrays for hyperthermia treatment of
cancer, IEEE Trans. Microwave Theory Tech., vol. MTT-34,
pp- 481-648, May 1986.

R. F. Harrington, Field Computation by Moment Methods.
New York: Macmillan, 1968, ch. 10.

Y. Leviatan and A. Boag, "Analysis of electromagnetic
scattering from dielectric cylinders using a multifilament
current model," IEEE Trans. Antennas Propagat., vol. AP-35,
pp. 1119-1127, October 1987.

Y. Leviatan, A. Boag, and A. Boag, "Generalized formula-
tions for electromagnetic scattering from perfectly conducting
and homogeneous material bodies-theory and numerical solu-
tion," IEEE Trans. Antennas Propagat. (10 appear).

(1]

(2]

13

[4]

[5] R.Peloso, D. T. Tuma, and R. K. Jain, "Dielectric properties
of solid tumors during normothermia and hyperthermia,"
IEEE Trans. Biomed. Eng., vol. BME-31, pp. 725-728,

November 1984.



